
Solid Semantics for Abstract Argumentation
Frameworks and the Preservation of Solid

Semantic Properties?

Xiaolong Liu1,2[https://orcid.org/0000−0003−0780−766X] and
Weiwei Chen1(B)[https://orcid.org/0000−0002−3447−8163]

1 Institute of Logic and Cognition and Department of Philosophy
Sun Yat-sen University, Guangzhou, China
{liuxlong6,chenww26}@mail2.sysu.edu.cn

2 IRIT, University of Toulouse, Toulouse, France

Abstract. In this paper, we propose solid admissibility that is a strength-
ened version of Dung’s admissibility to obtain the most acceptable set of
arguments. Besides, other solid extensions based on solid admissibility
are defined. Such extensions not only include all defenders of its ele-
ments but also exclude all arguments indirectly attacked and indirectly
defended by some argument(s). Furthermore, we characterize solid ex-
tensions with propositional formulas. Using these formulas, we aggregate
solid extensions by using approaches from judgment aggregation. Espe-
cially, although no quota rule preserves Dung’s admissibility for any argu-
mentation framework, we show that there exist quota rules that preserve
solid admissibility for any argumentation framework.

Keywords: Abstract Argumentation · Solid Semantics· Social Choice
Theory.

1 Introduction

In Dung’s work [12], an argumentation framework (AF) is a directed graph,
where nodes represent arguments and edges represent elements of a binary rela-
tion. It has been studied widely over the last decades. One of the core notions of
AFs is admissibility. An admissible extension is a set of arguments that contains
no internal conflict and defends its elements against any attacker.

In this paper, we mainly focus on obtaining the most acceptable arguments in
AFs by strengthening Dung’s admissibility. Before discussing this idea, we first
illustrate two problems (or drawbacks) observed from the literature. The first one
is observed from graded acceptability [14] which provides an approach to rank
arguments from the most acceptable to the weakest one(s) by parameterizing
the numbers of attackers and counter-attackers. Hence, we can require that a
set of arguments is graded-acceptable if it contains at least n counter-attackers
for each attacker of its elements. Graded acceptability is flexible as we can tune
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Fig. 1: Three problematic argumentation frameworks

the parameter n. What if we want to find out in an AF the sets of arguments
such that they exactly contain all counter-attackers for each attacker of their
elements? It is impossible to achieve this goal by tuning the parameter n, as
different attackers may have different numbers of counter-attackers. Consider
the following example.

Example 1. In Fig. 1a, {A1, C1}, {A2, C2} and {A1, A2, C2} are acceptable un-
der graded semantics when we require that a set of arguments is acceptable if
it contains at least one counter-attacker for each attacker of its elements. We
should notice that although {A1, A2, C2} contains all counter-attackers when its
elements are attacked, {A2, C2} fails to contain all counter-attackers whenever
its elements are attacked. When the requirement is more demanding in the sense
that a set of arguments is acceptable if it contains at least two counter-attackers
for each attacker of its elements, {A1, A2, C2} is still acceptable under this re-
quirement. Although {A1, C1} contains all counter-attackers when its elements
are attacked, it fails to satisfy this requirement.

The other problem is observed from the situation where some argument indi-
rectly attacks and indirectly defends some argument. There are other semantics
[1, 7] that also provide approaches to rank arguments. But their approaches rely
on conjectures regarding the processing of cycles. However, Dung indicates in
[12] that the presence of cycles could be a problem. In this work, an argument
A is controversial w.r.t. an argument B if A indirectly attacks and indirectly
defends B. Such arguments could lead to problematic situations. Consider the
following example.

Example 2. In Fig. 1b, A is controversial w.r.t. C as A indirectly attacks and in-
directly defends C. From a skeptical view, A and C should not occur in the same
set of acceptable arguments. But {A,C, F} is admissible in Dung’s semantics.

There is no consensus on whether to accept or reject such arguments. Note
that any argument in an odd-length cycle is controversial w.r.t. any argument
in this cycle. There are many articles aiming to address this problem [3, 6, 4,
11]. For example, Baumann et al. [4] argue that in Fig. 1c, A should be rejected
while B should be accepted, since the attack from the self-defeat argument A
is not valid. However, Jakobovits and Vermeir [15] state that A and B can be
labeled as “undecided” and “rejected”, resp. They argue that since A is “strong
enough” to attack A, surely it is strong enough to do the same with B. Compared
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with these approaches directly facing these disputable situations, our approach
is more like bypassing such situations.

Considering the emergence of the problems above, we argue that the most ac-
ceptable arguments should satisfy two criteria: (i) they should have defenders as
many as possible, and (ii) they should avoid the undesirable interference of some
arguments. Dung’s admissibility only requires a weak defense in the sense that
only one mandatory defender is enough. An interesting fact is that some prob-
lematic situations disappear after Dung’s admissibility is strengthened. In this
paper, we propose solid admissibility which satisfies the two criteria. Roughly
speaking, a solidly admissible extension is a set of arguments that contains no
internal conflict, defends its elements against any attackers, and contains all the
defenders. We will show that if an argument A is controversial w.r.t. an argument
B, then B will never occur in any solid extension based on solid admissibility.
To sum up, such extensions not only contain all defenders of their elements, but
also avoid the interference of any argument that is indirectly attacked and indi-
rectly defended by some argument. This conforms to the intuition in practical
reasoning or real life in the sense that if an argument has more defenders, then
surely it has less controversy.

We apply solid semantics in the field of judgment aggregation, a branch of
social choice theory. When a group of agents evaluates which arguments are ac-
ceptable in an AF, each of them may report a different extension under a specific
solid semantics that represents a individual viewpoint about which arguments
are acceptable. We study whether their collective outcome is also a solid exten-
sion under this semantics when quota rules are applied. Especially, we show that
there exist quota rules that preserve solid admissibility for any AF.

Contribution Firstly, we propose a family of new semantics for abstract
argumentation. Such semantics provide an approach to circumvent a controver-
sial situation in AFs and also capture a feature that graded semantics fail to
capture. Secondly, the new semantics have more possibility results for extension
aggregation than Dung’s semantics do.

Paper outline The rest of this paper is organized as follows. Section 2
reviews the background of abstract argumentation and judgment aggregation.
Section 3 defines solid admissibility and shows how the problems are addressed.
Section 4 develops more solid semantics and shows the connections among them.
Besides, we compare solid semantics with Dung’s semantics. Furthermore, we
present propositional formulas that characterize the solid semantics and pave
the way for solid extensions aggregation. Section 5 shows preservation results
for the solid semantics. Section 6 mainly compares solid semantics with other
related semantics. Section 7 concludes this paper and points out future work.

2 Preliminary

2.1 Abstract argumentation

This part reviews some notions of abstract argumentation [12]. Some definitions
are adopted from [14].



4 X. Liu and W. Chen

Definition 1 (Argumentation framework). An argumentation framework
is a pair F = 〈Arg,⇀〉, where Arg is a finite and non-empty set of arguments,
and ⇀ is a binary relation on Arg.

For any A,B ∈ Arg, A ⇀ B (or A attacks B) denotes that (A,B) ∈⇀.
For any B ∈ Arg, B = {A ∈ Arg | A ⇀ B}, namely, B denotes the set of
the attackers of B. A is an initial argument iff A = ∅. For any ∆ ⊆ Arg and
any B ∈ Arg, ∆ ⇀ B denotes that there exists an argument A ∈ ∆ such that
A ⇀ B. For any ∆ ⊆ Arg and any A ∈ Arg, A ⇀ ∆ denotes that there exists
an argument B ∈ ∆ such that A ⇀ B. For any A,C ∈ Arg, A is a defender of
C iff there exists an argument B ∈ Arg such that A ⇀ B and B ⇀ C.

An argument A indirectly attacks an argument B iff there exists a finite
sequence A0, . . . , A2n+1 such that (i) B = A0 and A = A2n+1, and (ii) for each
i, 0 6 i 6 2n, Ai+1 ⇀ Ai. An argument A indirectly defends an argument B iff
there exists a finite sequence A0, . . . , A2n such that (i) B = A0 and A = A2n,
and (ii) for each i, 0 6 i < 2n, Ai+1 ⇀ Ai. An argument A is controversial w.r.t.
an argument B iff A indirectly attacks and indirectly defends B. Note that direct
attackers (resp. defenders) are also indirect attackers (resp. defenders).

Definition 2 (Dung’s defense). Given F = 〈Arg,⇀〉. ∆ ⊆ Arg defends C ∈
Arg iff for any B ∈ Arg, if B ⇀ C then ∆ ⇀ B.

Definition 3 (Defense function). Given F = 〈Arg,⇀〉. The defense function

d: 2Arg −→ 2Arg of F is defined as d(∆) = {C ∈ Arg | ∆ defends C}.

Definition 4 (Neutrality function). Given F = 〈Arg,⇀〉. The neutrality

function n: 2Arg −→ 2Arg of F is defined as n(∆) = {B ∈ Arg | not ∆ ⇀ B}.

Definition 5 (Dung’s semantics). Given F = 〈Arg,⇀〉. For any ∆ ⊆ Arg, (i)
∆ is a conflict-free extension iff ∆ ⊆ n(∆); (ii) ∆ is a self-defending extension
iff ∆ ⊆ d(∆); (iii) ∆ is an admissible extension iff ∆ ⊆ n(∆) and ∆ ⊆ d(∆);
(iv) ∆ is a complete extension iff ∆ ⊆ n(∆) and ∆ = d(∆); (v) ∆ is a preferred
extension iff ∆ is a maximal admissible extension; (vi) ∆ is a stable extension
iff ∆ = n(∆); (vii) ∆ is the grounded extension iff ∆ is the least fixed point of
the defense function d.

Theorem 1 (Dung, 1995). Given F = 〈Arg,⇀〉. (i) If ∆ ⊆ Arg is a preferred
extension, then ∆ is complete extension, but not vice versa; (ii) If ∆ ⊆ Arg is an
admissible extension, then there exists a preferred extension Γ such that ∆ ⊆ Γ .

2.2 Integrity constraints and judgment aggregation

Given F = 〈Arg,⇀〉, Dung’s semantics can be captured by propositional lan-
guage (denoted as LF), whose literals are arguments in Arg [5]. A model is
represented by the set of the literals which it satisfies. In other words, a model
of a formula is a subset of Arg: (i) for any A ∈ Arg, ∆ � A iff A ∈ ∆; (ii) ∆ � ¬ϕ
iff ∆ � ϕ does not hold; (iii) ∆ � ϕ ∧ ψ iff ∆ � ϕ and ∆ � ψ.
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A property σ of extensions can be regarded as a subset of 2Arg, namely,

σ ⊆ 2Arg. Then the set of the extensions under a semantics is a property, e.g.,
completeness is the set of the complete extensions of F. For any formula ϕ in
LF, we let Mod(ϕ) = {∆ ⊆ Arg | ∆ � ϕ}, namely, Mod(ϕ) denotes the set of all
models of ϕ. Obviously, σ = Mod(ϕ) is a property. When using a formula ϕ to
characterize such a property, ϕ is referred to as an integrity constraint.

We next introduce a model for the aggregation of extensions [10, 13]. Given
F = 〈Arg,⇀〉. Let N = {1, · · · , n} be a finite set of agents. Imagining that each
agent i ∈ N reports an extension ∆i ⊆ Arg. Then ∆ = (∆1, · · · , ∆n) is referred

to as a profile. An aggregation rule is a function F : (2Arg)n −→ 2Arg, mapping
any given profile of extensions to a subset of Arg.

Definition 6 (Quota rules). Given F = 〈Arg,⇀〉, let N be a finite set of
n agents, and let q ∈ {1, · · · , n}. The quota rule with quota q is defined as

the aggregation rule mapping any given profile ∆ = (∆1, · · · , ∆n) ∈ (2Arg)n of
extensions to the set including exactly those arguments accepted by at least q
agents: Fq(∆) = {A ∈ Arg | #{i ∈ N | A ∈ ∆i} > q}.

The quota rule Fq for n agents with q = dn+1
2 e (resp., q = 1, q = n) for F is

called the strict majority (resp., nomination, unanimity) rule.

Definition 7 (Preservation). Given F = 〈Arg,⇀〉. Let σ ⊆ 2Arg be a prop-

erty of extensions. An aggregation rule F : (2Arg)n −→ 2Arg for n agents is said
to preserve σ if F (∆) ∈ σ for every profile ∆ = (∆1, · · · , ∆1) ∈ σn.

Lemma 1 (Grandi and Endriss, 2013). Given F = 〈Arg,⇀〉. Let ϕ be a
clause (i.e., disjunctions of literals) in LF with k1 positive literals and k2 negative
literals. Then a quota rule Fq for n agents preserves the property Mod(ϕ) for F
iff the following inequality holds: q · (k2 − k1) > n · (k2 − 1)− k1.

Lemma 2 (Grandi and Endriss, 2013). Given F = 〈Arg,⇀〉. Let ϕ1 and ϕ2

be integrity constraints in LF. If an aggregation rule F preserves both Mod(ϕ1)
and Mod(ϕ2), then F preserves Mod(ϕ1 ∧ ϕ2), but not vice versa.

3 Solid admissibility

To obtain the most acceptable arguments that satisfy the two criteria proposed
in the introduction, we formally introduce solid admissibility in this section.
Arguments in admissible extensions satisfy the criteria. Firstly, we strengthen
Dung’s defense. Definition 8 states that a set of arguments solidly defends an
argument iff this set defends (in Dung’s sense) this argument and contains all
the defenders of each element of this set.

Definition 8 (Solid defense). Given F = 〈Arg,⇀〉. ∆ ⊆ Arg solidly defends
(or s-defends) C ∈ Arg iff for any B ∈ Arg, if B ⇀ C, then ∆ ⇀ B and B ⊆ ∆.
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Definition 9 (Solid defense function). Given F = 〈Arg,⇀〉. The solid de-

fense function ds: 2Arg −→ 2Arg of F is defined as follows. For any ∆ ⊆ Arg,

ds(∆) =
{
C ∈ Arg | ∆ s-defends C

}
(1)

Next we show an important property of the solid defense function. It is easy
to see that, if a set of arguments s-defends an argument, then any superset of
this set also s-defends this argument by Definition 8.

Theorem 2. The solid defense function ds is monotonic.

Proposition 1. Given F = 〈Arg,⇀〉. For any ∆ ⊆ Arg, ds(∆) ⊆ d(∆), but not
vice versa.

Proposition 1 states that solid defense strengthens Dung’s defense since, if a
set of arguments s-defends an argument, then this set also defends this argument.
To show the converse does not hold, consider F1 in Fig. 2a. ∆ defends C. But
the attackers of B are not fully included in ∆. So ∆ does not s-defend C.

Definition 10. Given F = 〈Arg,⇀〉. For any ∆ ⊆ Arg, ∆ is a s-self-defending
extension iff ∆ ⊆ ds(∆).

In graded semantics [14], a set of arguments ∆ mn-defends an argument C
iff there are at most m − 1 attackers of C that are not counterattacked by at
least n arguments in ∆, where m and n are positive integers. A set of arguments
is mn-self-defending iff it mn-defends each element. We can tune the parameters
to obtain defenses with different levels of strength. For example, when n = 1,
the larger m is, the stronger the defense is. In Fig. 1a, {A1, C1}, {A2, C2} and
{A1, A2, C2} are 11-self-defending. But {A2, C2} fails to contain all defenders
of C2. One might be tempted to tune the parameters to obtain a stronger de-
fense. Then only {A1, A2, C2} is 12-self-defending. Although {A1, C1} contains
all defenders of C1, it is not 12-self-defending. Hence, graded defense can not
capture sets of arguments that exactly contain all defenders of their elements
by tuning the parameters. However, solid defense can accomplish this, since it is
identified that {A2, C2} is not s-self-defending while {A1, C1} and {A1, A2, C2}
are s-self-defending.

Definition 11. Given F = 〈Arg,⇀〉. For any ∆ ⊆ Arg, ∆ is a s-admissible
extension iff ∆ ⊆ n(∆) and ∆ ⊆ ds(∆).

Definition 11 states that a set of arguments is a s-admissible extension iff the
set is a conflict-free and s-self-defending extension. Next we show that Dung’s
Fundamental Lemma has a counterpart in our semantics. The following lemma
states that whenever we have a s-admissible extension, if we put into this exten-
sion an argument that is s-defended by this extension, then the new set is still
a s-admissible extension. The proof is similar to Dung’s proof [12].

Lemma 3 (s-fundamental lemma). Given F = 〈Arg,⇀〉, a s-admissible ex-
tension ∆ ⊆ Arg, and two arguments C, C ′ ∈ Arg which are s-defended by ∆.
Then (i) ∆′ = ∆ ∪ {C} is s-admissible and (ii) ∆′ s-defends C ′.
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As we have strengthened Dung’s admissibility, the second problem mentioned
in the introduction can be addressed now. From a skeptical view, it is not cau-
tious to accept an argument that is indirectly attacked and indirectly defended
by some argument. The following theorem states that such arguments never
occur in s-admissible extensions.

Theorem 3. Given F = 〈Arg,⇀〉 and a s-admissible extension ∆ ⊆ Arg. If an
argument A ∈ Arg is controversial w.r.t. an argument B ∈ Arg, then B /∈ ∆.

Proof. Assume that A is controversial w.r.t. B. Suppose for the sake of a con-
tradiction that B ∈ ∆. Since A indirectly defends B and ∆ is s-self-defending,
we also have A ∈ ∆. Besides, since A indirectly attacks B, there exists a finite
sequence A0, . . . , A2n+1 such that (i) B = A0 and A = A2n+1, and (ii) for each
i, 0 6 i 6 2n, Ai+1 ⇀ Ai. If n = 0, then A1 ⇀ A0, namely, A ⇀ B. This con-
tradicts the conflict-freeness of ∆. If n 6= 0, then A2n indirectly defends B. Since
∆ is s-self-defending, A2n ∈ ∆ . Again, the fact A2n+1 ⇀ A2n (i.e., A ⇀ A2n)
contradicts the conflict-freeness of ∆. So we conclude that B /∈ ∆.

Note that in Theorem 3, A is not excluded from ∆, since A could be an initial
argument. It is not reasonable to reject an unattacked argument. Consider F2 in
Fig. 1b. We can see that {A,C, F} is admissible. However, since A is controversial
w.r.t. C, {A,C, F} is not s-admissible. {A} is still s-admissible. The problem of
odd-length cycles has been widely studied. It is thorny to assign a status to an
argument in an odd-length cycle, since any argument in an odd-length cycle is
controversial w.r.t. any argument in this cycle. There is no consensus on this
problem. Interestingly, the following corollary states that such arguments never
occur in s-admissible extensions. Moreover, once there is a path from an odd-
length cycle to some argument, this argument will never occur in any s-admissible
extension since any argument in the odd-length cycle is controversial w.r.t. it.

Corollary 1. Given F = 〈Arg,⇀〉 and a s-admissible extension ∆ ⊆ Arg. If an
argument A ∈ Arg is in an odd-length cycle, then A /∈ ∆.

4 Solid semantics

We start by developing some solid semantics based on solid admissibility in this
section. These semantics strengthen Dung’s semantics in the sense that for a
solid extension ∆, there exists a Dung’s extension Γ such that ∆ is a subset of
Γ . Moreover, we will show connections among solid extensions and compare solid
extensions with Dung’s extensions. These solid semantics can be characterized
by propositional formulas.

Definition 12 (Solid semantics). Given F = 〈Arg,⇀〉. For any ∆ ⊆ Arg,
(i) ∆ is a s-complete extension iff ∆ ⊆ n(∆) and ∆ = ds(∆); (ii) ∆ is a
s-preferred extension iff ∆ is a maximal s-admissible extension; (iii) ∆ is a s-
stable extension iff ∆ = n(∆) and for any argument A /∈ ∆, A ⊆ ∆; (iv) ∆ is
the s-grounded extension iff ∆ is the least fixed point of ds.
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Fig. 2: Four argumentation frameworks

Here are some comments for the definition above. We define these solid ex-
tensions by using the neutrality function n and the solid defense function ds,
like Dung’s extension in Definition 5. A s-complete extension is a fixed point of
ds which is also a conflict-free extension. In other words, a s-complete exten-
sion is a s-admissible extension that contains all arguments s-defended by it. A
s-preferred extension has maximality and solid admissibility. A set of arguments
∆ is a s-stable extension whenever it is a fixed point of n and all attackers of
any argument outside of ∆ are in ∆. The s-grounded extension is unique.

Next we present some connections among solid semantics. A s-stable ex-
tension is a s-preferred extension. And a s-preferred extension is a s-complete
extension. Besides, the s-grounded extension is the least s-complete extension.

Theorem 4. Given F = 〈Arg,⇀〉. For any ∆ ⊆ Arg, (i) if ∆ is a s-preferred
extension, then ∆ is a s-complete extension, but not vice versa; (ii) if ∆ is a
s-stable extension, then ∆ is a s-preferred extension, but not vice versa; (iii) The
s-grounded extension is the least s-complete extension.

Proof. Take a set of arguments ∆ ⊆ Arg. (i) Suppose that ∆ is a s-preferred
extension. Then according to Definition 11 and the second item of Definition 12,
we have ∆ ⊆ n(∆) and ∆ ⊆ ds(∆). It suffices to show ds(∆) ⊆ ∆. Suppose that
an argument C ∈ ds(∆), namely, ∆ s-defends C. Then ∆∪{C} is s-admissible by
Lemma 3. Suppose for the sake of a contradiction that C /∈ ∆. This contradicts
the maximality of ∆. Hence, C ∈ ∆. It follows that ∆ = ds(∆). So ∆ is s-
complete extension by the first item of Definition 12. Next we show the converse
does not hold. Consider F2 in Fig. 2b. Take two sets ∆ = {A} and Γ = {A,C}.
Then ∆ is a s-complete extension. However, we can see that Γ is s-admissible and
∆ ⊂ Γ . Hence, ∆ is not a maximal s-admissible extension (i.e., not s-preferred).

(ii) Suppose that ∆ is a s-stable extension. Then applying the third item
of Definition 12 yields ∆ = n(∆). We next verify ∆ ⊆ ds(∆). Assume that
an argument C ∈ ∆. To demonstrate C ∈ ds(∆), suppose that an argument
B ∈ Arg attacks C. Then B /∈ ∆ as ∆ is conflict-free. It follows that B /∈ n(∆).
Thus, ∆ ⇀ B by Definition 4. Again, using the third item of Definition 12 yields
B ⊆ ∆. Hence, ∆ s-defends C by Definition 8. Then C ∈ ds(∆) by Definition 9. It
follows that ∆ is a s-admissible extension. At last, we prove the maximality of ∆.
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Suppose for the sake of a contradiction that there exists a s-admissible set Γ such
that ∆ ⊂ Γ . Then there exists an argument C ′ such that C ′ ∈ Γ but C ′ /∈ ∆.
Immediately, we have ∆ ⇀ C ′ as C ′ /∈ ∆. This contradicts conflict-freeness of
Γ . So ∆ is a maximal s-admissible extension. To show that the converse does
not hold, let us consider F3 in Fig. 2c. Let ∆ = {A,C}. Then ∆ is a s-preferred
extension. We can see that D /∈ ∆. But the attackers of D are not fully included
in ∆. Hence, ∆ is not a s-stable extension.

(iii) As Arg is finite, the least fixed point of ds (i.e., the grounded extension)
can be computed as dimin

s (∅) where imin is the least integer i such that di+1
s (∅) =

dis(∅). Moreover, dis(∅) is s-admissible by induction on natural number i and
Lemma 3. Hence, the least fixed point of ds is a s-complete extension according
to the first item of Definition 12. Thus, the least fixed point of ds is a subset of
any s-complete extension as as any s-complete extension is a fixed point of ds.

Recall that any s-admissible extension contains no argument that is indirectly
attacked and indirectly defended by some argument. Since we have showed that
the solid extensions in Definition 12 are also s-admissible, they contain no such
argument either, according to Theorem 3. Next we present an interesting prop-
erty that the set of arguments outside of a s-stable extension is conflict-free.

Proposition 2. Given F = 〈Arg,⇀〉. For any ∆ ⊆ Arg, if ∆ is a s-stable
extension, then Arg \∆ is a conflict-free extension.

In the following, we show that solid semantics can be interpreted as a class
of strengthenings of Dung’s semantics. In other words, for any solid extension,
there exists a Dung’s counterpart such that it is a superset of the solid extension.

Proposition 3. Given F = 〈Arg,⇀〉. For any ∆ ⊆ Arg, (i) if ∆ is a s-
self-defending extensions, then ∆ is self-defending extension; (ii) if ∆ is a s-
admissible extension, then ∆ is an admissible extension; (iii) if ∆ is a s-complete
extension, then there exists a complete extension Γ such that ∆ ⊆ Γ ; (iv) if ∆
is a s-preferred extension, then there exists a preferred extension Γ such that
∆ ⊆ Γ ; (v) if ∆ is a s-stable extension, then ∆ is a stable extension; (vi) if ∆
is the s-grounded extension, then ∆ is a subset of the grounded extension.

Proof. Take a set of arguments ∆ ⊆ Arg. (i) Suppose ∆ is s-self-defending.
Then from Definition 10 we have ∆ ⊆ ds(∆). We also have ds(∆) ⊆ d(∆) by
Proposition 1. It follows that ∆ ⊆ d(∆). (ii) This item is easily obtained from the
first item. (iii) Suppose that ∆ is s-complete. Then ∆ is s-admissible. Hence, ∆
is admissible. Therefore, there exists a preferred extension Γ such that ∆ ⊆ Γ by
Theorem 1. Besides, Γ is also a complete extension by Theorem 1. (iv) Suppose
that ∆ is s-preferred. Then ∆ is s-admissible. Hence, ∆ is admissible. Therefore,
there exists a preferred extension Γ such that ∆ ⊆ Γ by Theorem 1. (v) This
item follows from the third item of Definition 12 and the fifth item of Definition 5.
(vi) Recall that the least fixed point of ds (resp., d) is found by iterating the
application of ds (resp., d) from the empty set. Besides, we have dis(∅) ⊆ di(∅)
by induction on natural number i. And we also have di(∅) ⊆ di+1(∅). Therefore,
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Fig. 3: An overview of solid semantics and Dung’s semantics. We can see that
for any solid extension, there exists a superset that is also a Dung’s extension.

during the process of iteration, the s-grounded extension will be found no later
than the grounded extension. So the former is a subset of the latter.

To gain a better understanding of differences between Dung’s extensions and
solid extensions, we provide two examples. Example 3 shows that if a set of
arguments is a self-defending (resp., a complete, a preferred, a stable, or the
grounded) extension, then it may fail to be a s-self-defending (resp., s-complete,
a s-preferred, a s-stable or the s-grounded) extension. Example 4 shows that
if a set of arguments is a s-complete (resp., a s-preferred or the s-grounded)
extension, then it may fail to be a complete (resp., a preferred or the grounded)
extension. However, it is easy to see that a s-stable extension must be a stable
extension by Definition 5 and Definition 12. We illustrate in Fig. 3 an overview
of how the solid extensions are related to each other and Dung’s extensions.

Example 3. Let us consider F1 in Fig. 2a. Take a set of arguments ∆ = {A,C}.
Then it is easy to see that ∆ is a self-defending extension but not a s-self-
defending extension. Besides, ∆ is a complete, a preferred, a stable and the
grounded extension. However, according to Theorem 3, C can not be included
in any s-admissible extension, since B is controversial w.r.t. C. Hence, ∆ is
neither a s-complete, a s-preferred, a s-stable, nor the s-grounded extension.

Example 4. Let us consider F4 in Fig. 2d. Let ∆ = {A,D,F}. Then ∆ is a s-
complete, a s-preferred and the s-grounded extension. However, we can see that
argument C which is defended by ∆ is not included in ∆. Hence, ∆ is neither a
complete, a preferred, a stable nor the grounded extension.

Before moving to the next section, we characterize the solid semantics in
terms of integrity constraints (i.e., propositional formulas) expressed in LF. We
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say that a set of arguments is a s-reinstating extension iff each argument s-
defended by this set belongs to this set. It is worth mentioning that the integrity
constrain of conflict-freeness [5] is ICCF ≡

∧
A,B∈Arg

A⇀B

(
¬A ∨ ¬B

)
.

Proposition 4. Given F = 〈Arg,⇀〉. ∆ ⊆ Arg is a s-self-defending, s-reinstating,
s-stable, s-admissible, s-complete, s-preferred and s-grounded extension, resp. iff

– ∆ � ICSS where ICSS ≡
∧

C∈Arg

[
C→

∧
B∈Arg
B⇀C

(
(
∨

A∈Arg
A⇀B

A) ∧ (
∧

A∈Arg
A⇀B

A)
)]

;

– ∆ � ICSR where ICSR ≡
∧

C∈Arg

[ ∧
B∈Arg
B⇀C

(
(
∨

A∈Arg
A⇀B

A) ∧ (
∧

A∈Arg
A⇀B

A)
)
→ C

]
;

– ∆ � ICSST where ICSST ≡
∧

B∈Arg

[(
B↔

∧
A∈Arg
A⇀B

¬A
)
∧
(
¬B→

∧
A∈Arg
A⇀B

A
)]

;

– ∆ � ICSA where ICSA ≡ ICCF ∧ ICSS;

– ∆ � ICSC where ICSC ≡ ICSA ∧ ICSR;

– ∆ is a maximal model of ICSA;

– ∆ is the least model of ICSC.

5 Preservation of solid semantic properties

Quota rules are natural rules to be considered when contemplating mechanisms
to perform aggregation. They have low computational complexity and satisfy
some appealing properties. For instance, they are monotonic and strategy-proof
as studied in judgment aggregation. The problem of aggregating extensions sub-
mitted by several agents on a given AF is an important and interesting topic.
Especially, no quota rule preserves Dung’s admissibility for all AFs [10]. So we
wonder what admissible extensions can be preserved. In light of the integrity con-
straints for solid semantics in Proposition 4, we can investigate the preservation
results for solid semantic properties by using the model defined in Section 2.2 and
quota rules. We analyze that in the scenarios where a set of agents each provides
us with a set of arguments that satisfies a specific solid semantics, under what
circumstance such solid semantic property will be preserved under aggregation.

5.1 Preserving solid self-defence and solid admissibility

We start by exploring the circumstances where the s-self-defending property
can be preserved. Theorem 5 presents a positive result that every quota rule
preserves the s-self-defending property for all AFs.

Theorem 5. Given F = 〈Arg,⇀〉. Every quota rule Fq for n agents preserves
the property of being s-self-defending for F.
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Proof. Recall from Proposition 4 that ICSS is a conjunction of formulas of the
form: ϕ ≡ C →

∧
B∈Arg
B⇀C

(
(
∨

A∈Arg
A⇀B

A) ∧ (
∧

A∈Arg
A⇀B

A)
)
. Note that this formula

is indexed by argument C, let us study the preservation of such formula. If C is
an initial argument (an argument not receiving attacks in F), then ϕ ≡ C → >,
which can be simplified to ϕ ≡ >. It follows that in this case, every quota rule Fq

for n agents preserves Mod(ϕ) for F. If C has at least one attacker, then we need
to take into account the following two cases. The first case is that there exists
an attacker B of C such that B is an initial argument. In this case, we have
ϕ ≡ ¬C (this can be easily obtained as

∧
B∈Arg
B⇀C

(
(
∨

A∈Arg
A⇀B

A)∧ (
∧

A∈Arg
A⇀B

A)
)

is

always false if there is an attacker B of C that has no attacker). Then, according
to Lemma 1, every quota rule Fq for n agents preserves Mod(ϕ) for F, as the
inequality q · (1− 0) > n · (1− 1)− 0, which can be simplified to q > 0, always
holds. The other case is that all attackers of C are not initial. Then, we let
{B1, . . . , Bp} be the set of attackers of C, and let {Ai

1, . . . , A
i
`i
} be the set of

attackers of Bi where 1 6 i 6 p and `i = |Bi|. Then ϕ can be rewritten as
follows: ϕ ≡

(
(¬C∨A1

1)∧· · ·∧ (¬C∨A1
`1

)
)
∧· · ·∧

(
(¬C∨Ap

1)∧· · ·∧ (¬C∨Ap
`p

)
)
.

Thus, in this case, ϕ is a conjunction of clauses with one negative literal and one
positive literal. We take one such clause ψ = ¬C ∨Ai

lj
. According to Lemma 1,

every quota rule Fq preserves ψ in this case. Thus, every quota rule for n agents
preserves ϕ. It follows that all clauses of ICSS can be preserved by all quota
rules. We conclude that every quota rule Fq for n agents preserves the property
Mod(ICSS) for F by Lemma 2.

Obviously, the strict majority rule, the nomination rule and the unanimity
rule as specific quota rules, will preserve s-self-defense. Note that different from
the property of being s-self-defending, Dung’s self-defense cannot be preserved
by some quota rule. One example is the strict majority rule [10].

We now turn to consider the preservation of solid admissibility. Recall that a
set of arguments is s-admissible if it satisfies conflict-freeness and s-self-defense.
With Lemma 2, we know that if an aggregation rule preserves both conflict-
freeness and s-self-defense, then solid admissibility will be preserved by such
rule. The following proposition restates a result for conflict-freeness in [10].

Proposition 5. Given F = 〈Arg,⇀〉. A quota rule Fq for n agents preserves
conflict-freeness for F if q > n

2 .

Theorem 6. Given F = 〈Arg,⇀〉. Any quota rule Fq for n agents with q > n
2

preserves solid admissibility for F.

Applying Theorem 5 and Proposition 5 immediately yields Theorem 6, which
shows that any quota rule higher than or equal to the strict majority rule can
preserve solid admissibility for arbitrary AF. Recall that no quota rule preserves
Dung’s admissibility for all AFs [10]. Thus, we have obtained a positive result,
i.e., we know that there exist quota rules that preserve solid admissibility for
all AFs. Notably, Chen [9] uses a different model to show that the majority
rule guarantees Dung’s admissibility on profiles of solid admissible sets during
aggregation of extensions. Theorem 6 entails this result, but not vice versa.
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5.2 Preserving solid reinstatement and solid completeness

We turn to explore solid reinstatement. For convenience, we provide three nota-
tions. Given F = 〈Arg,⇀〉. Firstly, for any C ∈ Arg, DF(C) denotes the set of C’s
defenders, i.e., DF(C) = {A ∈ Arg | A is a defender of C}. Secondly, we let E(F)
denote the set of arguments which are not initial arguments and whose attackers
are not initial arguments either, i.e., E(F) =

{
C ∈ Arg | C 6= ∅ and for any B ∈

C, B 6= ∅}. Thirdly, we let M(F) denote the maximal number of the defenders
of an argument in E(F), i.e., M(F) = max

C∈E(F)
|DF(C)|.

Theorem 7. Given F = 〈Arg,⇀〉. A quota rule Fq for n agents preserves the
property of being s-reinstating for F if q · (M(F)− 1) > n · (M(F)− 1)− 1.

Proof. Assume that q · (M(F)− 1) > n · (M(F)− 1)− 1. ICSR is a conjunction
of formulas of the form of ϕ ≡

∧
B∈Arg
B⇀C

(
(
∨

A∈Arg
A⇀B

A)∧ (
∧

A∈Arg
A⇀B

A)
)
→ C from

Proposition 4. Take an argument C ∈ Arg. If C is an initial argument, then
ϕ ≡ C, which can be regarded as a 1-clause (with 1 positive literal and no
negative literal). Applying Lemma 1, any quota rule Fq for n agents preserves
Mod(ϕ) for F in this case, as the inequality q · (0 − 1) > n · (0 − 1) − 1 (which
can be simplified to q < n+ 1) always holds.

If C is not an initial argument, then we need to consider two cases. The first
case is that there exists a C’s attacker B such that B is an initial argument,
then ϕ ≡ >. It follows that in this case, any quota rule Fq for n agents preserves
Mod(ϕ) for F. The second case is that any C’s attacker B is not an initial
argument. Then we can let {B1, · · · , Bp} be the set of C’s attackers, and let
{Ai

1, · · · , Ai
`i
} be the set of Bi’s attackers where 1 6 i 6 p and `i = |Bi|. we can

reformulate ϕ as follows: ϕ ≡
(
(¬A1

1∨· · ·∨¬A1
`1

)∨· · ·∨ (¬Ap
1 ∨· · ·∨¬A

p
`p

)
)
∨C.

Hence, ϕ is a (
p∑

i=1

`i + 1)-clause (with
p∑

i=1

`i negative literals and 1 positive

literal). By Lemma 1, a quota rule Fq for n agents preserves Mod(ϕ) if the
following inequality holds: q·(

∑p
i=1 `i−1) > n·(

∑p
i=1 `i−1)−1. Doing so becomes

harder as
∑p

i=1 `i increases. Note that C ∈ E(F) in this case and
∑p

i=1 `i is the
number of the defenders of C. Recall that the maximal number of defenders of
an argument in E(F) is M(F). Hence, the maximal value of

∑p
i=1 `i is M(F).

Thus, by Lemma 1, a quota rule Fq for n agents preserve Mod(ϕ) for F in this
case, if the inequality holds for the maximal value of

∑p
i=1 `i (i.e., M(F)). As

we have assumed that q · (M(F) − 1) > n · (M(F) − 1) − 1, it follows that a
quota rule Fq for n agents preserves Mod(ϕ) for F. Finally, using Lemma 2, we
can conclude that a quota rule Fq for n agents preserves Mod(ICSR) for F if
q · (M(F)− 1) > n · (M(F)− 1)− 1.

Recall that the unanimity rule is a quota rule Fq for n agents with q = n. It
is easy to see that the inequality n · (M(F) − 1) > n · (M(F) − 1) − 1 always
holds. Then according to Theorem 7, the unanimity rule preserves the property
of being s-reinstating for any AF. The theorem below for s-completeness is a
direct consequence of Theorem 6 and Theorem 7.
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Theorem 8. Given F = 〈Arg,⇀〉. A quota rule Fq for n agents preserves s-
completeness for F if q > n

2 and q · (M(F)− 1) > n · (M(F)− 1)− 1.

5.3 Preserving solid groundedness, solid preferredness and solid
stability

As the s-grounded extension is unique in any AF, any quota rule preserves s-
groundedness for any AF. We say that a property σ is inclusion maximal if for
any ∆1, ∆2 ∈ σ, if ∆1 ⊆ ∆2 then ∆1 = ∆2. It is easy to see that both the solid
preferredness and solid stability are inclusion maximal. Hence, we can investigate
these two properties together. Given F = 〈Arg,⇀〉, let σ be an inclusion maximal
property of extensions such that |σ| > 2, and let n be the number of agents. If
n is even, then no quota rule preserves σ for F. If n is odd, then no quota rule
different from the strict majority rule preserves σ for F. Such results are highly
analogous to Theorem 15 in [10]. We omit the proof for this reason.

6 Related work

Various notions of admissibility are proposed since Dung’s admissibility was
introduced in [12]. Baroni and Giacomin introduce the notion of strong admis-
sibility [2] which is stronger than Dung’s admissibility. It captures the idea that
any argument in a strongly admissible set neither defend itself nor involve in
its own defense. Grossi and Modgil propose Graded admissibility [14], whereby
Dung’s admissibility can be strengthened or weakened by parameterizing the
numbers of attackers and defenders. Chen [8] proposes concrete admissibility.
Differently from solid admissibility, concrete admissibility does not require the
existence of defenders, although both of them require containing all defenders.
Prudent semantics [11] is another semantics that aims at dealing with controver-
sial arguments. Whenever an argument A is controversial w.r.t. an argument B,
both prudent semantics and solid semantics can prevent A and B from occurring
in the same extension. But there is a difference between these two semantics:
both A and B can occur in a prudent extension independently, however, B is ex-
cluded from any s-admissible extension, while Amight occur in some s-admissible
extension (e.g., A is an initial argument).

7 Conclusion and future work

This paper mainly makes contributions to the field of abstract argumentation
theory. To address the problems observed in ranking-based argumentation and
controversial arguments, we develop solid semantics by strengthening Dung’s
semantics. By applying the technique in [5], we capture solid semantics by using
propositional formulas. Finally, in virtue of these formulas, we aggregate solid
extensions by using quota rules and obtain positive preservation results.

Recall that solid defense requires that all the defenders of an argument C
are included in a set of arguments ∆. It would be interesting to characterize the
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idea that any percent of the defenders of C are included in a set of arguments ∆.
Moreover, we can also allow a part of attackers to be not attacked. For example,
we can try to capture the idea that ∆ defends C if more than fifty percent of C’s
attackers have more than fifty percent of their attackers in ∆ (i.e., if the majority
of C’s attackers have the majority of their attackers in ∆). Future work could
focus on introducing proportionality to the defense of arguments of abstract
argumentation. Furthermore, the complexity of reasoning tasks involving solid
semantics should be studied.
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