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In many real-life situations that involve exchanges of arguments, individuals may differ on their as-

sessment of which supports between the arguments are in fact justified, i.e., they put forward differ-

ent support-relations. When confronted with such situations, we may wish to aggregate individuals’

argumentation views on support-relations into a collective view, which is acceptable to the group.

In this paper, we assume that under bipolar argumentation frameworks, individuals are equipped

with a set of arguments and a set of attacks between arguments, but with possibly different support-

relations. Using the methodology in social choice theory, we analyze what semantic properties of

bipolar argumentation frameworks can be preserved by aggregation rules during the aggregation of

support-relations.

1 Introduction

The attack relation has played a significant role in formal argumentation [2, 11, 23]. However, recent

years have seen a revived interest in the support relation between arguments in argumentation systems [4,

5, 6, 7, 26]. In these systems, an argument can not only attack another argument, but it can also support

another one. For example, an argument can support another argument by confirming its premise or

undermining one of its attackers. The support relation between arguments is vital in modeling debates

in real life. Due to the incompleteness of information, or different positions, agents may have different

opinions regarding the support relation between arguments. To see this, consider the following example:

Example 1. Consider a debate regarding the possible influence of artificial intelligence (AI) to the job

market. Suppose that there are two arguments in this debate:

A: Artificial intelligence improves the degree of work automation

B: More people will lose their jobs due to AI

Given the fact that AI is able to perform more of the tasks done by humans, some occupations will

decrease. Therefore, some people hold that argument A supports argument B. On the other hand, given

that AI will improve the quality of the work being done by humans, lower the prices of goods and

services, create economic advantages, and allow for the creation of new jobs in new occupations, some

people hold that argument A does not support argument B. △
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In many scenarios, such as court debate, parliament debate, policy advisory committee decision-

making, agents may have different opinions on which supports between arguments are acceptable, which

form argumentative stances of them. When a group of agents are engaged in a debate, we may wish to

aggregate stances possessed by agents to obtain a collective decision agreed on by the group. To model

the support relation between arguments, we consider the bipolar argumentation framework (BAF) [5, 6,

7], a formalism of Dung’s abstract argumentation framework [11]. Given that there is a broad discussion

of the aggregation of argumentation systems with the attack relation [10, 25, 12, 9], it is far from being

clear what consensuses can be achieved when the support relation is involved in this process. The goal

of this paper is to investigate the aggregation of views of a group of agents in the context of bipolar

argumentation. Given a set of arguments and a set of attack-relations between these arguments, agents

might conflict with one another upon supports between arguments, i.e., for every pair of arguments that

is being considered in a debate whether the first supports the second. In this scenario, we may wish to

aggregate such support-relations.

In this paper, we use the method from graph aggregation, a recent discipline of social choice theory

that deals with aggregating several graphs into a single output graph that constitutes a good compromise.

Following the model introduced by Chen and Endriss [9], we consider the preservation of properties of

bipolar argumentation frameworks, i.e., given a property that is satisfied by individual BAFs, we study

whether it can be satisfied in the BAF returned by aggregation rules. For some properties, we show that

there is an aggregation rule or a family of aggregation rules preserve them. For some others, we show

that any aggregation rule that satisfies certain basic axioms and preserves them must be a dictatorship.

Paper overview The rest of the paper is organized as follows. In Section 2, we recapitulate the bipo-

lar argumentation framework, along with its semantics. We introduce our model for the aggregation of

support-relations of bipolar argumentation frameworks in Section 3, followed by our results of preserva-

tion in Section 4. In Section 5, we introduce some work related to our work. Finally, in Section 6, we

conclude this work and point out some directions for future work.

2 Bipolar argumentation

An abstract bipolar argumentation framework [5, 6, 7] is an extension of Dung’s abstract argumentation

framework [11] in which a general support relation between arguments is added. Formally, an abstract

bipolar argumentation framework is a triple 〈Arg,⇀, 〉, where Arg is a set of arguments, ⇀ is a binary

relation on Arg, which is called the attack relation,  is a binary relation on Arg, which is called the

support relation. Given two arguments A,B ∈ Arg, if A ⇀ B holds, then we say that A attacks B, if

A B, then we say that A supports B. The attack relation and the support relation must verify the

following consistency constraint: ⇀ ∩ = /0, which is called essential constraint.

Definition 1. Let A,B ∈ Arg, there is a sequence of supports for B by A iff there exists a sequence of

elements (A1, . . . ,An) of Arg such that n> 2,A = A1,B = An,A1 A2, . . . ,An−1 An.

Definition 2. Let A,B ∈ Arg, a supported attack against B by A is a sequence of arguments (A1, . . . ,An)
of Arg such that A1 , . . . , An−1, An−1 ⇀ An, A = A1, An = B, and n> 3.

Note that if A ⇀ B is the case, then we say that A directly attacks B.

Definition 3. A secondary attack against an argument B by an argument A is a sequence (A1, . . . ,An) of

arguments of Arg such that A1 ⇀ A2, A2 . . . , An, A = A1, An = B, and n> 2.

For example, in Figure 1, A1 supported attacks E1, while A2 secondary attacks E2.
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A1 B1 C1 D1 E1

Supported attack

A2 B2 C2 D2 E2

Secondary attack

Figure 1: Illustration of supported attack and secondary attack

Definition 4. Let ∆ ⊆ Arg and A ∈ Arg. ∆ set-attacks A iff there exists a supported attack or a secondary

attack against A from an element of ∆. ∆ set-supports A iff there exists a sequence of supports for A from

an element of ∆.

Definition 5. Let ∆ ⊆ Arg be a set of arguments, ∆ is conflict-free iff ∄A,B ∈ ∆ such that {A} set-attacks

B.

Definition 6. Let ∆ ⊆ Arg be a set of arguments, ∆ is safe iff ∄B ∈ Arg such that ∆ set-attacks B and

either ∆ set-supports B, or B ∈ ∆.

In the context of bipolar argumentation, admissibility can be translated into d-admissibility,

s-admissibility and c-admissibility, based on different lines of coherence. In the following definition,

the notion of defense is the same as classical defense, namely, we say ∆ ⊆ Arg defends the argument

B ∈ Arg, then, there is an argument C ∈ ∆ with C ⇀ A for all arguments A ∈ Arg such that A ⇀ B.

Definition 7. Let ∆⊆ Arg be a set of arguments, ∆ is called d-admissible iff ∆ is conflict-free and defends

all its elements; ∆ is a d-preferred extension if it is maximal (w.r.t. set-inclusion) among all d-admissible

sets.

Definition 8. Let ∆ ⊆ Arg be a set of arguments, ∆ is called s-admissible iff ∆ is safe and defends all its

elements; ∆ is a s-preferred extension if it is maximal (w.r.t. set-inclusion) among all s-admissible sets.

Let the closure of ∆ ⊆ Arg be CL(∆) = {A ∈ Arg | there is a sequence of supports from B ∈ ∆ to A},

we say ∆ is closed iff ∆ = CL(∆).

Definition 9. Let ∆ ⊆ Arg be a set of arguments, ∆ is called c-admissible iff ∆ is conflict-free, self-

defending and closed; ∆ is a c-preferred extension if it is maximal (w.r.t. set-inclusion) among all c-

admissible sets.

We restate a proposition in [5] that demonstrates the relation between safety and conflict-freeness.

Proposition 1. Let ∆ ⊆ Arg be a set of arguments, if ∆ is safe, then ∆ is conflict-free. If ∆ is conflict-free

and closed, then ∆ is safe.

Definition 10. Let ∆ ⊆ Arg be a set of arguments, ∆ is stable if and only if ∆ is conflict-free and for every

argument A ∈ Arg\∆, ∆ set-attacks A.

It is worth mentioning that in the original papers, [5, 6] consider a particular set of BAFs, namly

acyclic BAFs, showing that such BAFs have some nice features. However, in this paper, we foucs on

BAFs that are more general, i.e., we remove the restriction on BAFs and consider both acyclic and cyclic

BAFs. From a technical point of view, the BAFs that are acyclic have only one stable extension, which

is the only preferred extension as well, while the BAFs with cycles could have more than one stable

extension and will be more general.
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There are several interpretations of support in the literature, including the deductive support, the

necessary support, and the evidential support (see an overview in [7]). The deductive support [4] is

intended to capture the intuition that given two arguments A and B, if A supports B, then the acceptance

of A implies the acceptance of B. The necessary support [19, 20] is intended to capture the intuition that

if A B is the case, then the the acceptance of B implies the acceptance of A, i.e., the acceptance of A

is necessary to obtain the acceptance of B. Finally, the evidential support [22, 21] proposes a new type

of argument, namely prima-facie arguments. Every standard argument is supposed to be supported by

at least one prima-facie argument, and every prima-facie argument does not require support from other

arguments.

The supported attack is connected with deductive support. To see this, let us come back to Figure 1,

according to the deductive support, the acceptance of A1 implies the acceptance of B1, and so the accep-

tance of C1, the acceptance of D1. In the meantime, the acceptance of D1 implies the non-acceptance of

E1. Thus, the acceptance of A1 implies the non-acceptance of E1. The necessary support can be taken

into account by considering secondary attack. We again consider Figure 1. First, the acceptance of A2

implies the non-acceptance of B2. Then, according to necessary support, the non-acceptance of B2 im-

plies the non-acceptance of C2, and so the non-acceptance of D2, the non-acceptance of E2. Thus, the

acceptance of A2 implies the non-acceptance of E2.

3 The model

Fix a finite set Arg of arguments, a set (⇀) of attacks between arguments, and a set N = {1, . . . ,n} of

n agents. Each agent i ∈ N supplies us with a set of supports  i, which together with Arg and (⇀)
gives rise to a bipolar argumentation framework 〈Arg,⇀, i〉, reflecting her individual views on which

supports between arguments are acceptable. A profile of support-relations    = ( 1, . . . , n) is a set

of support-relations provided by agents. An aggregation rule F : (2Arg×Arg)n → 2Arg×Arg is a function

that maps a given profile of support-relations into a single support-relation. We denote N   sup by the set of

agents who accept sup under profile   , i.e., N   sup = {i ∈ N | sup ∈ i}, and #N   sup denotes the number of

such agents.

Here we define desirable properties of aggregation rules. These properties are referred as axioms in

the social choice literature. We start with formal definitions, followed by informal descriptions.

Definition 11. An aggregation rule F is unanimous if 1 ∩ . . .∩ n⊆ F(   ).

Definition 12. An aggregation rule F is grounded if F(   )⊆ 1 ∪ . . .∪ n.

Definition 13. An aggregation rule F is neutral if for any profile of support-relations    , for any pair of

supports sup1, sup2, N   sup1
= N   sup2

then sup1 ∈ F(   ) iff sup2 ∈ F(   ).

Definition 14. An aggregation rule F is independent if for any pair of profiles of support-relations    1,

   2, for any support sup, N   1
sup = N   2

sup then sup ∈ F(   1) iff sup ∈ F(   2).

Definition 15. An aggregation rule F is dictatorial if there is an agent i such that for any profile of

support-relations    ,F(   ) = i.

The unanimity axiom states that the support agreed by all agents should be included in the collective

BAF. The groundedness axiom expresses that all supports in the collective BAF should be supported by

at least one agent. The neutrality axiom requires that given a profile of support-relations, any pair of

supports should be treated equally in this profile. The independent axiom states that all support-relations

should be treated equally in any profile of support-relations. The dictatorship axiom indicates that there

is an agent who is dictatorial.
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A B C D E

Agent 1

A B C D E

Agent 2

A B C D E

Agent 3

A B C D E

F(   )

Figure 2: Example for a profile with Arg = {A,B,C,D,E}

Definition 16. The unanimity rule is an aggregation rule F with F(   ) = {sup ∈ Arg×Arg | sup ∈ 1

∩ . . .∩ n}.

Definition 17. Let i ∈ N be an agent, the dictatorship rule of individual i is the aggregation rule with

F(   ) = i.

The unanimity rule only accepts those supports approved by all agents: it is a demanding aggregation

rule. The dictatorships always return the supports submitted by dictators.

Example 2. Suppose that there are three agents have to decide on the acceptance of supports between

four arguments. Agent 1 supports A B and B C, agent 2 supports B C and C  D, agent 3

supports A B and C D. We assume that the attack relation from D to E is accepted by all agents. The

scenario is illustrated in Figure 2. If we apply the majority rule, then we obtain a bipolar argumentation

framework consisting of the three supports A B, B C, and C D. We observe that the set {A,E}
is conflict-free for all agents. However, it is not conflict-free in the outcome of the majority rule (which

returns a set containing only the majoritarian supports) since A supported attacks E . So conflict-freeness

as a semantic property is not preserved by the majority rule in this specific example. △

But what about the preservation results of other semantic properties? Can they be preserved in

general? Before going any further, we introduce more semantic properties of particular interest.

The problem we are considering in this paper is the preservation of semantic properties in the context

of bipolar argumentation. Given a property P ⊆ 2Arg×Arg that is a set of supports on Arg, and P is satisfied

by all agents, whether the output of the aggregation rule satisfies P? A formal definition is as follows.

Definition 18. An aggregation rule F preserves a property P if whenever for every profile    we have

that P( i) for all i ∈ N, then we have P(F(   )).

The problem of preservation is a special problem of collective rationality which has been discussed

extensively in other parts of social choice, such as preference aggregation [1], judgment aggregation [16],

graph aggregation [13], as well as attack aggregation in the context of abstract argumentation [3, 24, 9].

In the scenario where each agent possesses a BAF, agents might disagree on some details, such as

whether a support between two arguments can be justified. Nevertheless, they may agree on some high-

level features of BAFs. The essential constraint is an example of a high-level feature that requires no
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agent accepts both the attack relation and the support relation between a pair of arguments. When we

observe that all agents verify such semantic feature, we would like to see what aggregation rule preserves

this basic constraint under aggregation.

Given a set of arguments ∆ ∈ Arg that is conflict-free in every agent’s bipolar argumentation frame-

work, we may wish to preserve its conflict-freeness in the outcome. Therefore, conflict-freeness as a

semantic property is of particular interest. Similar definition can be posed to the preservation of safety

and admissibility. Recall that if a set of arguments ∆ is conflict-free and closed, then ∆ is safe (Proposi-

tion 1). Thus, the closedness is of interest to us as well. Finally, we are also interested in the preservation

of semantic extensions. Given a set of arguments ∆ ⊆ Arg that is an extension of a specific semantics

of 〈Arg,⇀, i〉 for all i ∈ N, we are interested in under what circumstances ∆ is an extension of such

semantics of F(   ) as well. Finally, given an argument that is acceptable under a specific semantics for

all agents, we would like to see whether such argument is acceptable in the collective outcome.

4 Preservation results

In this section, we present the preservation results for semantic properties. We start with essential con-

straint and closedness, two basic requirements of bipolar argumentation frameworks. Then, we turn to

consider the preservation of conflict-freeness, followed by considering safety, followed by considering

d-admissibility, s-admissibility, and c-admissibility. Then, we proceed with the study the properties of

being an extension, including the property of being a d-preferred extension, being a s-preferred exten-

sion, being a c-preferred extension and being a stable extension. Finally, we study the preservation of

acceptability of arguments. Proofs of results in this section can be found in the appendix.

4.1 Preservation results for essential constraint, closedness, conflict-freeness, safety and

admissibility

Recall that a bipolar AF satisfies essential constraint if it does not contain two arguments for which the

first one simultaneously attacks and supports the second one.

Proposition 2. Every aggregation rule F that is grounded preserves essential constraint.

The closedness is also an important property. Our result demonstrates that every reasonable rule

preserves it.

Lemma 3. Every aggregation rule F that is grounded preserves closedness.

For conflict-freeness, we obtain that the unanimity rule, a demanding rule preserves the conflict-

freeness of arbitrary sets of arguments.

Proposition 4. The unanimity rule preserves conflict-freeness.

The preservation of the safety of arbitrary sets of arguments can be accomplished by the unanimity

rule.

Proposition 5. The unanimity rule preserves safety.

Proof. This proposition is a consequence of Proposition 4, Lemma 3, and Proposition 1.

The concepts of d-admissibility and s-admissibility are based on different coherences, but the preser-

vation results for them are similar, as the following proposition demonstrates.

Proposition 6. The unanimity rule preserves either d-admissibility or s-admissibility.
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4.2 Preservation results for properties of being an extension

We are going to present preservation results for more demanding properties. Before proceeding, we

introduce some necessary terminology and a simple result, as well as a technique developed by Endriss

and Grandi for the more general framework of graph aggregation [13]. Let sup ∈ be a support, let

N = {1, . . . ,n} be a finite set of individuals (or agents, we assume that there are two or more agents),

and let    be a profile of support-relations. Recall that N   sup is the set of agents who accept sup under

profile    . A winning coalition W ⊆ N is a set of agents who can decide whether to accept or reject a

given support sup. Given an aggregation rule F , if F is neutral and independent, then F can be fully

determined by a single set W of winning coalitions, i.e., for every profile   and every support sup it is

the case that sup ∈ F(   )⇔ N   sup ∈ W .

In our proofs, we will rely on the concept of ultrafilter familiar from set theory [17]. An ultrafilter is

a collection of subsets of N satisfying closure under intersection, maximality, and /0 /∈ W .

Definition 19. An ultrafilter W on a set N is a collection of subsets of N satisfying the following condi-

tions:

(1) /0 /∈ W

(2) for any pair of sets C1,C2 ⊆ N, C1,C2 ∈ W implies C1 ∩C2 ∈ W (closure under intersection)

(3) for any set C, one of C and N\C is in W (maximality)

We restate a simple result, which interprets a well-known fact of ultrafilter in our context:

Let F be an independent and neutral aggregation rule and let W be the corresponding set

of winning coalitions for supports, i.e., sup ∈ F(   )⇔ N   sup ∈ W for all sup ∈ . Then, F

is dictatorial if and only if W is an ultrafilter.

Besides the properties identified in Section 3, we introduce two meta-properties:

Definition 20. A property P is called non-simple if there exists a set Sup ⊆ Arg × Arg of supports

and three individual supports sup1,sup2,sup3 ∈ Arg×Arg \ Sup such that 〈Arg,⇀,Sup∪ S〉 with S ⊆
{sup1,sup2,sup3} satisfies P if and only if S 6= {sup1,sup2,sup3}.

Definition 21. A property P is called disjunctive if there exists a set Sup ⊆ Arg×Arg of supports and

two individual supports sup1,sup2 ∈ Arg×Arg\Sup such that 〈Arg,⇀,Sup∪ S〉 with S ⊆ {sup1,sup2}
satisfies P if and only if S 6= /0.

Non-simplicity requires that, in the context of Sup, accepting any proper subset of {sup1,sup2,sup3}
is possible, while accepting {sup1,sup2,sup3} is not. Disjunctiveness requires that, in the context of

Sup, we should accept at least one of sup1 and sup2. The term of simplicity was introduced by Nehring

and Puppe [18] as the median property; the term of disjunctiveness was introduced by Endriss and

Grandi [13] as a graph meta-property. It is worth noting that a meta-property is a class of properties,

a property satisfies or does not satisfy a specific meta-property. Even though the definitions of meta-

properties are not complicated, deciding whether a given property belongs to a meta-property is still not

straightforward.

Meta-properties have connections with properties of BAFs and aggregation rules: on the one hand,

meta-properties outline high-level features of properties of BAFs, with which we are able to systemat-

ically study the preservation of semantic properties of BAFs with simple proofs; on the other hand, as

we will see in the following lemmas, meta-properties allow us to generalize specific result for specific

properties by instantiating the general results. To be more specific, if an aggregation rule preserves a

property that belongs to a meta-property, then it is a dictatorship.
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Lemma 7. Let P be a property that is non-simple and disjunctive. Then, for |Arg |> 3, any unanimous,

grounded, neutral, and independent aggregation rule F that preserves P must be a dictatorship.

If a property we are interested in is non-simple and disjunctive, then we can apply Lemma 7 to obtain

an axiomatic result for it.

Theorem 8. For |Arg |> 5, any unanimous, grounded, neutral, and independent aggregation rule F that

preserves either d-preferred, s-preferred, or c-preferred extensions must be a dictatorship.

For the scenarios when |Arg| = 4, or even |Arg| = 3, we are not able to verify whether the theorem

can still apply, we conjecture that the bound on the cardinality of Arg is sharp and we believe that the

theorem has covered all cases of practical interest. By comparison, we recall that for the property of

being a preferred extension of Dung’s argumentation framework, Chen and Endriss have shown that

only dictatorships preserve it [9]. They have made the assumption that every agent is equipped with a

different set of attack relations while they hold the same set of arguments.

Note that Theorem 8 is an impossibility result that indicates the preservation of specific properties is

impossible, unless the aggregation rule under consideration is dictatorial. They relate to generalisations

of Arrow’s Impossibility Theorem [1] to graph aggregation and attack-relation aggregation. One of the

features of the aggregation rules we used in this section is that they accept the axiom of independence.

Even though this axiom is attractive in some sense, to escape the impossibilities, a prime direction is to

relax it. For example, we can consider distance-based rules and investigate whether we are able to obtain

some positive results.

Theorem 8 has assumed that the interpretation of support is deductive support. Even though it is

enough for our purposes, namely it is enough to show that only dictatorships preserve d-preferred (s-

preferred, c-preferred) extensions, we are still interested in what happens when the interpretation is

restricted to necessary support. The bad news is, we still cannot overcome impossibility results.

Theorem 9. If the interpretation of support is necessary support, for |Arg |> 5, any unanimous, grounded,

neutral, and independent aggregation rule F that preserves either d-preferred, s-preferred, or c-preferred

extensions must be a dictatorship.

4.2.1 Preservation result for stable extensions

For stable extensions, by using the same techniques, we obtain a similar impossibility result.

Theorem 10. For |Arg | > 5, any unanimous, grounded, neutral, and independent aggregation rule F

that preserves stable extensions must be a dictatorship.

By comparison, we recall that the nomination rule preserves stable extensions of Dung’s argumenta-

tion frameworks [9].

4.3 Preservation of argument acceptability

Now, we move to study the preservation of acceptability of arguments. Before proceeding further, it is

thus important to keep in mind that our model has assumed that each agent i ∈ N reports a set of supports

 i on the same set of arguments and attack relations. Given two BAFs 1 and 2, if 1⊇ 2, namely

the supports of 1 is a superset of 2, then a d-admissible (s-admissible, c-admissible, respectively) set

of 1 remains d-admissible (s-admissible, c-admissible, respectively) in 2.

Lemma 11. Given two BAFs 1 and 2, if 1⊇ 2, then every d-admissible set of arguments of 1

is a d-admissible set of 2.



Weiwei Chen 95

Lemma 12. Given two BAFs 1 and 2, if 1⊇ 2, then every s-admissible set of arguments of 1

is a s-admissible set of 2.

Lemma 13. Given two BAFs 1 and 2, if 1⊇ 2, then every c-admissible set of arguments of 1

is a c-admissible set of 2.

Fact 14. Given a BAF , if ∆ ⊆ Arg is a d-preferred (s-preferred, c-preferred, respectively) extension

of , then ∆ is a d-admissible (s-admissible, c-admissible, respectively) set of arguments of .

Thus, every d-admissible (s-admissible, c-admissible, respectively) set of arguments is included in

a d-preferred (s-preferred, c-preferred, respectively) extension. With this, we are ready to present the

preservation results for argument acceptability under preferred semantics, including d-preferred seman-

tics, s-preferred semantics, and c-preferred semantics. Note that in the following we say that an argument

under a d-preferred extension, we mean that such argument is a member of a d-preferred extension.

Proposition 15. The unanimity rule preserves the property of argument acceptability under d-preferred

semantics.

Proposition 16. The unanimity rule preserves the property of argument acceptability under either s-

preferred or c-preferred semantics.

The proof is similar to the proof for Theorem 15. The only difference is that every s-admissible

(c-admissible) set of i is a s-admissible set of F(   ) is because of Lemma 12 (Lemma 13).

5 Related work

Previous work on obtaining argumentative consensus among a group of agents are mainly focus on

abstract argumentation frameworks [10, 25, 9]. Among them, Chen and Endriss [9] study of the preser-

vation of semantic properties during the aggregation of attack-relations of abstract argumentation frame-

works. As a potential domain of application for the model they develop, they do not make explicit

reference to bipolar argumentation frameworks. In addition, similar to us, they have made use of meta-

properties proposed by Endriss and Grandi for graph aggregation [13], which serve as technical devices

to obtain preservation results for semantic properties.

The problem of aggregating bipolar opinions has received interests in the literature. The idea of

aggregating support-relations of bipolar argumentation frameworks has been outlined in a preliminary

version of this paper [8]. Lauren et al. [15] consider aggregating bipolar assumption-based argumentation

frameworks under the assumption that agents propose the same set of arguments, but propose different

sets of attacks and supports. Their focus is quota rules and oligarchic rules. Kontarinis et al. [14] study

designing mechanisms for “regulating” debates under the setting of each agent in the debate equipped

with a bipolar argumentation framework. We note that in their settings, agents report the same set of

arguments, but with possibly different attack- and support-relations.

6 Conclusion

In this paper, we have studied the aggregation of agents’ view in the context of bipolar argumentation.

To be more specific, we have explored the problem of aggregating support-relations of bipolar argumen-

tation frameworks by making use of the methodology of social choice theory. To achieve this, we have

designed a model, in which agents are equipped with a set of arguments and a set of attacks, but with pos-

sibly different support-relations. We have shown which semantic properties of BAFs can be preserved by
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aggregation rules. We have proposed two BAF meta-properties, namely the property of “non-simplicity”

and “disjunctiveness”, both of which are high level features of BAFs. We show that such meta-properties

can be used to obtain impossibility results, namely for quickly proving what kind of aggregation rules

(or no desirable aggregation rule) is collectively rational with respect to BAF properties.

For future work, it is worth having an investigation of further meta-properties. We point out that

Lemma 7 is a variant of Theorem 16 in graph aggregation [13]. This indicates that there is space for other

variants of impossibility results for different assumptions. The preservation of some desirable properties

(for example, the property of being a d-preferred extension) during the aggregation of support-relations

is difficult. Thus, it is worth studying whether such properties can be preserved in different settings. For

instance, agents might be equipped with the same set of arguments, but with possibly different attack-

and support-relations, and we aggregate attack- and support-relations by making use of different quota

rules. Finally, recall that there are at least three interpretations of support, in this paper, we focus on

the deductive support and necessary support. More interpretations of support, for example, evidential

support, should be investigated.
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l’Interaction, pp. 119–129.

[15] Stefan Lauren, Francesco Belardinelli & Francesca Toni (2021): Aggregating Bipolar Opinions. In:

Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS).

[16] Christian List & Philip Pettit (2002): Aggregating Sets of Judgments: An Impossibility Result.

Economics and Philosophy 18(1), pp. 89–110, doi:10.1017/S0266267102001098.

[17] Bernard Monjardet (1983): On the use of ultrafilters in social choice theory. Social choice and

welfare 5, pp. 73–78, doi:10.1016/B978-0-444-86487-1.50012-5.

[18] Klaus Nehring & Clemens Puppe (2007): The structure of strategy-proof social choice—Part I:

General characterization and possibility results on median spaces. Journal of Economic Theory

135(1), pp. 269–305, doi:10.1016/j.jet.2006.04.008.

[19] Farid Nouioua & Vincent Risch (2010): Bipolar argumentation frameworks with specialized sup-

ports. In: 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, 1, IEEE,

pp. 215–218, doi:10.1109/ICTAI.2010.37.

[20] Farid Nouioua & Vincent Risch (2011): Argumentation frameworks with necessities. In: Proceed-

ings of the International Conference on Scalable Uncertainty Management, Springer, pp. 163–176,

doi:10.1007/978-3-642-23963-2_14.

[21] Nir Oren, Michael Luck & Chris Reed (2010): Moving between argumentation frameworks.

In: Proceedings of the 2010 International Conference on Computational Models of Argument

(COMMA-2010), IOS Press, doi:10.3233/978-1-60750-619-5-379.

[22] Nir Oren & Timothy J. Norman (2008): Semantics for evidence-based argumentation. Proceedings

of the 2008 International Conference on Computational Models of Argument (COMMA-2008) 172,

p. 276.

http://dx.doi.org/10.1016/j.artint.2018.10.003
http://dx.doi.org/10.1016/j.artint.2007.04.012
http://dx.doi.org/10.1016/0004-3702(94)00041-X
http://dx.doi.org/10.3233/978-1-61499-111-3-129
http://dx.doi.org/10.1016/j.artint.2017.01.001
http://dx.doi.org/10.1017/S0266267102001098
http://dx.doi.org/10.1016/B978-0-444-86487-1.50012-5
http://dx.doi.org/10.1016/j.jet.2006.04.008
http://dx.doi.org/10.1109/ICTAI.2010.37
http://dx.doi.org/10.1007/978-3-642-23963-2_14
http://dx.doi.org/10.3233/978-1-60750-619-5-379


98 Aggregation of Support-Relations of BAFs

[23] Iyad Rahwan & Guillermo R. Simari (2009): Argumentation in Artificial Intelligence. Springer-

Verlag, doi:10.1007/978-0-387-98197-0.
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Appendix: Remaining Proofs

In this appendix we present the proofs omitted from the body of the paper.

Proof of Proposition 2

Let   = ( 1, . . . , n) be a profile of BAFs, in which i satisfies the essential constraint for all i ∈ N.

Let F be an aggregation rule that is grounded. For the sake of contradiction, we suppose that the essential

constraint is violated in F(   ). Without loss of generality, we suppose that both A ⇀ B and A B get

accepted in F(   ). From the assumption, we know that every agent agrees A ⇀ B. In the meantime, at

least one agent accepts A B under grounded aggregation rules, which cannot be the case. Thus, we

have the proposition. �

Proof of Lemma 3

We again let   = ( 1, . . . , n) be a profile of BAFs, let ∆ ⊆ Arg be the set of arguments under consid-

eration, and let F be an aggregation rule that is grounded. For the sake of contradiction, we suppose that

∆ is closed in i for all i ∈ N and not closed in F(   ), i.e., there is an argument A ∈ ∆ and an argument

B ∈ Arg\∆ such that A B in F(   ). As rules under considering are grounded, there is at least one

agent  i for which A i B is the case. This will lead to the situation that ∆ not being closed in  i,

contradicting our assumption. �

Proof of Proposition 4

Recall that the unanimity rule is the quota rule F with the quota of n. Let   = ( 1, . . . , n) be a profile

of BAFs. Let ∆ ⊆ Arg be the set of arguments under consideration. For the sake of contradiction, we

suppose that ∆ is conflict-free in i for all i ∈ N, and is not conflict-free in F(   ). This means that there

are two arguments A,B ∈ ∆ such that A supported or secondary attacks B in F(   ).

We now show that in the scenario where A is supported attacking B, i.e., there is a sequence of

arguments in F(   ) such that A1 , . . . , Am, Am ⇀B in which A1 =A, our proposition holds. From the

assumption we know that (Am ⇀ B) ∈⇀i for all i ∈ N. In addition, every agent agrees A1 , . . . , Am.
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http://dx.doi.org/10.1007/978-3-319-69131-2_23
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Thus, every agent agrees A1  , . . . , Am, Am ⇀ B, i.e., ∆ is not conflict-free in  i for all i ∈ N, in

contradiction to our earlier assumption.

For the scenario where A is secondary attacking B, we note that the proof is similar to the proof of

the one where A is supported attacking B. Thus, we have the proposition. �

Proof of Proposition 6

Let F be the unanimity rule. Let   = ( 1, . . . , n) be a profile of bipolar argumentation frameworks.

Let ∆ ⊆ Arg be the set of arguments under consideration.

We suppose that ∆ is d-admissible in i for all i ∈ N. Then, ∆ is conflict-free in i for all i ∈ N as

well. By Proposition 4, ∆ is conflict-free in F(   ). By the assumption that all agents report the same set

of attacks, we get that for each argument A ∈ ∆, A is defended by ∆ in i for all i ∈ N. It follows that A

is defended by ∆ in F(   ) as well. Thus, ∆ is d-admissible in F(   ).
We omit the relative easy proof for s-admissibility. �

Proof of Lemma 7

Take any property P that is non-simple and disjunctive. Take any aggregation rule F that is unanimous,

grounded, neutral, independent and preserves P. By the assumption that F is neutral and independent,

F is determined by a set of winning coalitions W ⊆ 2N . What we need to do is proving that W is an

ultrafilter, i.e., to show that W is closed under intersection, W satisfies maximality, and /0 /∈ W .

/0 /∈ W This is a direct consequence of the assumption that F is grounded.

Maximality Take any set of agents C ⊆ N. Consider a profile in which exactly the individuals in C

propose sup1 and exactly those in N\C propose sup2. Since P is disjunctive, we know that one of sup1

and sup2 must be part of F(   ). Hence C ∈ W or N\C ∈ W .

Closure under intersection Take any two winning coalitions C1,C2 ∈ W . Assume toward a contra-

diction that C1 ∩C2 /∈ W . Consider a profile in which exactly the individuals in C1 propose sup1, exactly

the individuals in C2 propose sup2, and exactly the individuals in N\(C1 ∩C2) propose sup3. Now, since

C1 and C2 are winning coalitions, sup1 and sup2 must be part of F(   ). Hence, due to C1 ∩C2 /∈ W

and W satisfying maximality, we have N\(C1 ∩C2) ∈ W . Since the individuals in N\(C1 ∩C2) propose

sup3, we have sup3 ∈ F(   ). But we have assumed that F preserves non-simplicity, i.e., sup1,sup2,sup3

cannot be accepted together in F(   ). Thus, C1 ∩C2 ∈ W . �

Proof of Theorem 8

Suppose |Arg | > 5. Let P be the properties representing a given set of arguments being either a d-

preferred, a s-preferred or a c-preferred extension. Thus, by Lemma 7, we need to show that P is non-

simple and disjunctive in this case.

Non-simplicity Let Arg = {A,B,C,D,E, . . .}, let ⇀= {D ⇀ E,E ⇀ D,B ⇀ B,C ⇀ C}. Now we

focus on Arg \ {B,C,D} as the subset of arguments that may (or may not) form either a d-preferred,

a s-preferred or a c-preferred extension. We define Sup = /0, sup1 = (A B), sup2 = (B C), and

sup3 = (C D). This scenario is depicted in the top part of Figure 3. Consider all BAFs of the form
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A B C D E
sup1 sup2 sup3

A B

C

D

E

sup1

sup2

Non-simplicity Disjunctiveness

Figure 3: Scenarios used in the proof of Theorem 8

BAF = 〈Arg,⇀,Sup∪ S〉 with S ⊆ {sup1,sup2,sup3}. It is not difficult for the reader to verify that, for

S 6= {sup1,sup2,sup3}, B and C are self-attacking, D is attacked by E . Thus, they are unacceptable with

respect to {A,E}, i.e., Arg\{B,C,D} is a d-preferred, a s-preferred and a c-preferred extension. On the

other hand, for S = {sup1,sup2,sup3}, Arg\{B,C,D} is not a d-preferred nor a s-preferred or c-preferred

extension as E is set-attacked by A. Thus, P is non-simple.

Disjunctiveness Let Arg = {A,B,C,D,E . . .}, let ⇀= {B ⇀ C,B ⇀ D,C ⇀ E,D ⇀ E}. We focus

on Arg\ {C,D,E} as the subset of arguments that may (or may not) form a s-preferred extension. We

define Sup = /0, sup1 = (A C), sup2 = (A  D). This scenario is depicted in the bottom part of

Figure 3. Consider all BAFs of the form BAF = 〈Arg,⇀,Sup ∪ S〉 with S ⊆ {sup1,sup2}. For S 6= /0,

Arg\{C,D,E} is a d-preferred, a s-preferred, and a c-preferred extension. On the other hand, for S = /0,

Arg \{C,D,E} is not a s-preferred nor a d-preferred or a c-preferred extension as E is defended by B.

Thus, P is disjunctive. �

Proof of Theorem 9

Similar to Theorem 8, we still need to show that the property of being a d-preferred, a s-preferred, or

a c-preferred extension is non-simple and disjunctive when the interpretation of support is necessary

support.

Non-simplicity Let Arg = {A,B,C,D,E, . . .}, let ⇀= {D ⇀ E,E ⇀ D,B ⇀ B,C ⇀ C}. Now we

focus on Arg \ {B,C,D} as the subset of arguments that may (or may not) form either a d-preferred, a

s-preferred or a c-preferred extension. We define Sup = /0, sup1 = (B A), sup2 = (C B), and sup3 =
(D C), as illustrated in the top part of Figure 4. Consider all BAFs of the form BAF= 〈Arg,⇀,Sup∪S〉
with S ⊆ {sup1,sup2,sup3}. It is not difficult for the reader to verify that, for S 6= {sup1,sup2,sup3},

B and C are self-attacking, D is attacked by E . Thus, they are unacceptable with respect to {A,E}.

In the meantime, A is not attacked by any other argument, E defends itself, {A,E} is conflict-free,

i.e., Arg\ {B,C,D} is a d-preferred, a s-preferred, and a c-preferred extension. On the other hand, for

S = {sup1,sup2,sup3}, Arg\{B,C,D} is neither a d-preferred nor a s-preferred nor c-preferred extension

as E secondary attacks A. Thus, P is non-simple.

Disjunctiveness Let Arg = {A,B,C,D . . .}, let ⇀= {B ⇀ C,B ⇀ D}. We focus on Arg \ {A,C,D}
as the subset of arguments that may (or may not) form a s-preferred extension. We define Sup = /0,

sup1 = (C A), sup2 = (D A), as illustrated in the bottom part of Figure 4. Consider all BAFs of

the form BAF = 〈Arg,⇀,Sup∪S〉 with S ⊆ {sup1,sup2}. For S 6= /0, B secondary attacks A and directly
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Figure 4: Scenarios used in Theorem 9.

attacks C and D. Thus, Arg\{A,C,D} is a d-preferred, a s-preferred, and a c-preferred extension. On the

other hand, for S = /0, Arg\{A,C,D} is neither a s-preferred nor a d-preferred nor a c-preferred extension

as A is not attacked by any other argument and thus should be included in every d-preferred (s-preferred,

c-preferred) extension. Thus, P is disjunctive. �

Proof of Theorem 10

Suppose |Arg | > 5. Let P be the BAF-properties representing a given set of arguments being a stable

extension. We need to demonstrate that P is non-simple and disjunctive in this case.

A B C D E
sup1 sup2 sup3

A B

C

D

E

sup1

sup2

Non-simplicity Disjunctiveness

Figure 5: Scenarios used in the proof of Theorem 10

Non-simplicity Let Arg = {A,B,C,D,E, . . .}, let ⇀= {D ⇀ E,E ⇀ B,E ⇀C,E ⇀ D}. We focus on

Arg \ {B,C,D} as the subset of arguments that may (or may not) form a stable extension. We define

Sup = /0. sup1 = (A B), sup2 = (B C), and sup3 = (C D). This scenario is depicted in the top

part of Figure 5. Consider all BAFs of the form BAF = 〈Arg,⇀,Sup∪ S〉 with S ⊆ {sup1,sup2,sup3}.

The reader should be able to verify that, indeed, for S 6= {sup1,sup2,sup3}, Arg \ {B,C,D} is a stable

extension. For example, for S = {sup1,sup2}, B, C, and D are attacked by E . In the meantime, {A,E}
is conflict-free, i.e., Arg\{B,C,D} is a stable extension. On the other hand, for S = {sup1,sup2,sup3},

Arg\{B,C,D} is not a stable extension as E is set-attacked by A. Thus, P is non-simple.

Disjunctiveness Let Arg = {A,B,C,D,E . . .}, let ⇀= {B ⇀C,B ⇀ D,C ⇀ E,D ⇀ E}. We focus on

Arg \ {C,D,E} as the subset of arguments that may (or may not) form a stable extension. We define

Sup = /0, sup1 = (A C), sup2 = (A D). This scenario is depicted in the bottom part of Figure 5.

Consider all BAFs of the form BAF = 〈Arg,⇀,Sup∪ S〉 with S ⊆ {sup1,sup2}. The reader should be

able to verify that, indeed, for S 6= /0, Arg\{C,D,E} is a stable extension. On the other hand, for S = /0,

Arg\{C,D,E} is not a stable extension as E is defended by B. Thus, P is disjunctive. �
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Proof of Lemma 11

Let ∆ ⊆ Arg be a d-admissible set of 1. We need to show that ∆ is a d-admissible set of 2. To achieve

this, we need to demonstrate that in 2, (i) ∆ is conflict-free, and (ii) ∆ defends all of its members.

For (i), we need to show that ∆ is conflict-free in 2. If not, then there are two arguments A,B ∈ ∆

such A directly, supported, or secondary attacks B. If A directly attacks B in 2, then A directly attacks

B in  1 as the pair of BAFs report the same set of attacks, which contradicts the assumption that ∆ is

conflict-free in  1. If A supported attacks B in  2, then there is a sequence of argument (A1, . . . ,An)
such that A1  A2, . . . ,An−1 ⇀ An, A = A1, and An = B. As  1⊇ 2 and An−1 ⇀ An is the case, we

know that A1 A2, . . . ,An−1 ⇀ An in  2 as well, which means that there are two arguments A,B ∈ ∆

such that A supported attacks B, contradicting the fact that ∆ is conflict-free in 1. If A supported attacks

B in  2, this case is similar to the case that A supported attacks B, which will lead to that ∆ failing to

satisfy conflict-freeness in 1. Thus, ∆ is conflict-free in 2.

For (ii), we need to show that for every argument A ∈ ∆, if B ⇀ A, then there is a C ∈ ∆ such that

C ⇀ B, i.e, ∆ defends all its members in 2. Clearly, this is true as 1 and 2 report the same set of

attacks, and ∆ defends all its members in 1. �

Proof of Lemma 12

We need to show that a s-admissible set of arguments ∆ ⊆ Arg of  1 is a s-admissible set of  2. To

arrive at this goal, we need to demonstrate that in  2, (i) ∆ is conflict-free, (ii) ∆ defends all of its

members, and (iii) ∆ is safe. For (i) and (ii), the proofs are the same as the ones in Lemma 11. It remains

to show that ∆ is safe in 2. If not, then there is an argument B ∈ Arg such that ∆ set-attacks B and ∆

set-supports B, or B ∈ ∆. If ∆ set-supports B. there are two arguments A ∈ ∆ such A directly, supported,

or secondary attacks B. Using the construction similar to Lemma 11, it is easy to verify that under this

assumption, ∆ set-attacks B in 1. According to the assumption that 1⊇ 2, ∆ set-supports B in 1.

Then, ∆ is not safe in 1, contradiction. �

Proof of Lemma 13

Once again, we need to show that every c-admissible set ∆ of arguments of 1 is a c-admissible set of

 2. To arrive at this goal, we need to show that in  2 (i), ∆ is conflict-free, (ii) ∆ defends all of its

members, and (iii) ∆ is closed. For (i) and (ii), the proofs are the same as the ones in Lemma 11. It

remains to show that ∆ is closed in 2. If not, then there is an argument A ∈ ∆ and an argument B ∈ Arg

such that A supports B, and B /∈ ∆. According to the assumption that 1⊇ 2, A supports B, and B /∈ ∆

in 1, we get that ∆ is not closed in 1, contradiction. �

Proof of Proposition 15

Let A∈Arg be the argument under consideration, and we suppose that A is acceptable under a d-preferred

extension of  i for all i ∈ N. Let F be the unanimity rule. Clearly, F(   ) is a subset of  i for all

i ∈ N. Without loss of generality, we take  i to be the BAF under consideration. Then,  i⊇ F(   ).
Furthermore, A is acceptable under a d-preferred extension ∆1 ⊆ Arg of i i.e., A ∈ ∆1. Note that ∆1 is a

d-admissible set as well. According to Lemma 11, ∆1 is a d-admissible set of F(   ) as well. By Fact 14,

we know that there is a d-preferred extension ∆2 ⊆ Arg of F(   ) such that ∆2 ⊇ ∆1, and A is a member

of ∆2. That is to say, A is acceptable under a d-preferred extension of F(   ). We are done. �
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